Abnormal Object Detection by Canonical Scene-Based Contextual Model
نویسندگان
چکیده
Contextual modeling is a critical issue in scene understanding. Object detection accuracy can be improved by exploiting tendencies that are common among object configurations. However, conventional contextual models only exploit the tendencies of normal objects; abnormal objects that do not follow the same tendencies are hard to detect through contextual model. This paper proposes a novel generative model that detects abnormal objects by meeting four proposed criteria of success. This model generates normal as well as abnormal objects, each following their respective tendencies. Moreover, this generation is controlled by a latent scene variable. All latent variables of the proposed model are predicted through optimization via population-based Markov Chain Monte Carlo, which has a relatively short convergence time. We present a new abnormal dataset classified into three categories to thoroughly measure the accuracy of the proposed model for each category; the results demonstrate the superiority of our proposed approach over existing methods.
منابع مشابه
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کامل3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملScene Labeling with Contextual Hierarchical Models
Scene labeling is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in scene labeling frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framewor...
متن کاملDeep feature based contextual model for object detection
Object detection is one of the most active areas in computer vision, which has made significant improvement in recent years. Current state-of-the-art object detection methods mostly adhere to the framework of regions with convolutional neural network (R-CNN) and only use local appearance features inside object bounding boxes. Since these approaches ignore the contextual information around the o...
متن کامل